CheckMate Pro v2: Inspection Process

by Corey Cambre

As a CheckMate Pro inspector, I’d like to tell you about the steps we take when inspecting the models you submit for CheckMate Pro v2. Our goal is to help you get through the process as quickly and easily as possible. The procedure is a little different from Pro v2 because of our new focus on edge flow and clean topology. Knowing how we do inspections can help you pass the CheckMate Pro specification faster. You can also use the CheckMate Pro v2 Checklist to help you along.

Step 1. Determine the model type

When you first submit your model for CheckMate Pro, the first thing the inspector does is check to see if the model is being submitted as subdividable or as realtime.

In the Product Preview, the inspector looks for one of two things to be present:

  • The text “not intended for subdivision” in the product’s description, indicating that you intend the model to be used for background, real-time, or game use, OR
  • Wireframe thumbnails with subdivision applied to them and labeled with Subdivision Levels, indicating that you intend the model to be subdividable.

If one of these is found, the inspector can determine whether you are submitting for subdividable or realtime, and the inspector moves on to the next step. If neither of these are found (or if both are found), the inspector fails the submission and asks you to provide one (and only one) of these things in the product preview so he/she can tell which type of certification you’re going for.

Note that the inspector doesn’t check all aspects of the product preview just yet. That step is later in the process. This is a change from Pro v1 inspections, when we used to check the product preview first for sufficient rendered thumbnails, texture resolutions in the description, and so forth.

Step 2. Topology Check

If the model is specified as “not intended for subdivision” then the inspector checks that the model that has the minimum number of polygons possible to create the shape of the object, and excellent textures to make up the difference in detail.  If the model does not meet this standard, the inspector fails the model and asks you to reduce the number of edges around certain parts of the model to get it to the minimum number for polygons. See our examples of certified realtime models.

If the model is subdividable than the inspector checks for perfect edge flow, suitable for most customer needs such as editing, re-texturing, rigging, and subdivision.Possible fail points include poles and T-vertices as well as overall edge flow. If the inspector finds any issue that prevents the model from having clean edge flow, they take screen captures of these areas and circle the areas that need correction. You will find a link to these pictures in the support ticket. If you have trouble envisioning how to change your edge flow to fit the topology standard, you can ask the inspector for drawings showing possible solutions.

Once the model’s topology has been passed by the inspector (as either subdividable or non-subdividable) according to the specification,  then they move onto the next step in the inspection process.

Step 3. Product Preview

Only after your topology passes the specification do we look at the Product Preview, or the product as it appears on TurboSquid.  In this step we look at the rendered images, the specifications of the model, the description, etc. as described in Sections 1 and 3 in the CheckMate Pro Specification. If an inspector finds errors or issues with the Product Preview thumbnails or information, the Inspector fails the model and sends you notes on how to correct those errors.

At this point we also check to make sure your Vendor Information is filled out. This includes how and when you get paid for sales. Vendor Information must be complete before you can pass any CheckMate level including Lite.

Step 4. Native Model File

The Fourth step to the inspection process involves the native file format. This is the model that you chose in the Publisher as the model’s native format. This format should be the original format that you modeled the product in. The inspector checks the model against Section 2 in the CheckMate Pro Specification. Basically this is everything other than topology such as real world scale, textures present, objects in a named layer, model near origin, etc. Using the CheckMate Pro v2 Checklist before you submit can be very helpful in making sure you pass this step quickly.

If an inspector finds issues with the native format the model is failed, and you will receive notes on how to correct those errors. Once the native format  is up to the specification, the inspector goes onto the next step.

Step 5. Non-Native Files

Non-native files are other certifiable formats beyond the native format: Maya, 3ds Max, Cinema 4D, Softimage, or Lightwave. Inspectors check these files in the same way they check the native format in the previous step. They also look over the non-native topology to ensure there are no significant differences from native file.

If there is an error with a non-native file, the inspector fails the product and contacts you about your options:

  • You can fix the problem with the file to make it certifiable, OR
  • You can leave the file format as uncertified, meaning it will appear under “Unreviewed Formats” in the Product Preview. Note that any such file must pass the CheckMate Lite standard for files; it must open without errors and include all textures. The specifics are laid out in Section 2 of the Lite specification.

Once that question is settled and all non-native files pass one of the two points above, the model is certified for CheckMate Pro.

I hope you find this information helpful. We like seeing all the models coming in for CheckMate Pro, and we hope you’ll send more our way.


Comments are closed.

Terms of Use Privacy Policy Site Map © 2013 TurboSquid